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The behaviour of dipolar vortices in a rotating fluid with a sloping bottom (simulating 
the variation of the Coriolis parameter on the Earth, with the direction of steepest 
bottom slope corresponding with the northern direction) has been investigated in the 
laboratory. Dipoles were generated by moving a vertical cylinder through the fluid. 
Dye photographs provided qualitative information, whereas quantitative information 
about the evolving flow field was obtained by streak photography. Dipoles initially 
directed under a certain angle relative to the west-east axis showed meandering or 
cycloid-like trajectories. Some asymmetries between east-travelling dipoles (ETD’s) 
and west-travelling dipoles (WTD’s) were observed. ETD’s are stable in the trajectory 
sense: a small deviation from zonal motion results in small oscillations around the 
equilibrium latitude. WTD’s are unstable : small initial deviations produce large 
displacements in northern or southern directions. This asymmetry arises because the 
vorticity of a dipole moving westward is anticorrelated with the ambient vorticity, 
while the vorticities are correlated when the dipole moves eastward. ETD’s increase in 
size and eventually split into two independent monopoles, the rate of growth 
depending on the gradient of planetary vorticity. WTD’s are initially more compact 
but owing to the large displacements in the meridional direction strong asymmetries in 
the circulation of the two halves are produced, resulting in a large deformation of the 
weaker part. The experimental observations show good qualitative agreement with 
analytical and numerical results obtained using a modulated point-vortex model. 

1. Introduction 
Two-dimensional flows are characterized by the emergence of coherent vortices (see 

e.g. McWilliams 1984). Among these, the monopolar vortex is the most frequently 
occurring vortex type. The dipole, consisting of two closely packed counter-rotating 
vortices, is another notable member of the family of coherent vortex structures. 
Dipolar vortices have been observed in laboratory experiments under a variety of 
circumstances. For example, they may appear as the organized two-dimensional 
product of a pulsed, turbulent jet, in both stratified and rotating fluids (van Heijst & 
Flor 1989; Flierl, Stern & Whitehead 1983); in the wake of a cylinder moving through 
a soap film (Couder & Basdevant 1986); and in magnetohydrodynamic flows (Nguyen 
Duc & Sommeria 1988). High-resolution numerical simulations of two-dimensional 
turbulence also show the emergence of dipolar vortices (Legras, Santangelo & Benzi 
1988). In nature, dipoles have been observed in the form of ‘mushroom-like’ currents 
in the ocean (Fedorov & Ginsburg 1989) and as ‘blocking’ events in the atmosphere 
(Haines & Marshall 1987). 

The dipolar vortex has two remarkable properties: it possesses a separatrix and it 
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has a non-zero linear momentum. This means that the dipole provides an efficient 
mechanism for the transport of mass and momentum over large distances. In 
particular, oceanic dipolar vortices are believed to play an important role in the 
transport of scalar properties such as heat, salt, nutrients and other biochemical 
components. 

The two-dimensional character of large-scale motions in the oceans and in the 
atmosphere is due to both rotation, which makes the fluid move in (locally) horizontal 
planes, and geometry, since the ratio between horizontal and vertical scales is of O(103). 
The dynamics of geophysical flows is further fundamentally influenced by the gradient 
of the Coriolis parameter in the latitudinal direction, usually referred to as the p-effect. 

The simplest model that includes these effects is the so-called equivalent barotropic 
vorticity equation, which expresses the conservation of potential vorticity in a 
homogeneous, incompressible two-dimensional flow on a rotating sphere (see Pedlosky 
1979). In the context of plasma physics, this equation is known as Hasegawa-Mima 
equation, where a density gradient plays the same role as the gradient of the Coriolis 
force (see e.g. Makino, Kamimura & Taniuti 1981). In the sequel of this paper the 
equation will be used in the limit of infinite radius of deformation, but the results 
presented here have relevance to both geophysical flows and plasmas. 

The equivalent barotropic equation has a number of dipolar solutions, which are 
also known as modons. One common characteristic of modons is that, besides having 
a separatrix, they are either stationary or they translate perpendicularly to the gradient 
of ambient vorticity. The travelling modons thus provide a mechanism for transport 
along the isolines of ambient vorticity. An important question concerns the existence 
of similar structures that propagate transversally to those isolines. 

Although a modon is not an exact solution when its symmetry line is not parallel to 
isolines of ambient vorticity, Makino et al. (1981) used ‘tilted’ modons as initial 
conditions for numerical simulations. They found that the modons survived as 
coherent structures, moving along meandering trajectories in an eastward direction or 
along cycloid-like paths in a westward direction, depending on the tilting angle. Using 
a perturbation technique, Nycander & Isichenko (1990) also found these two regimes 
as well as the mode in between, in which the dipole performs a periodic looping 
excursion without any net displacement. They also calculated the decay rate based on 
vorticity generation in the wake of the dipole. The decay was found to be insignificant 
on the timescales of an oscillation of the dipole’s motion. 

Another approach to the problem has been the use of a couple of point vortices of 
equal but opposite strengths and allowing variations in relative circulation to preserve 
potential vorticity during the evolution. Kawano & Yamagata (1977) first found the 
three ‘regimes’ in the motion of the couples: (i) eastward meandering; (ii) westward 
cycloid-like trajectories ; and (iii) the ‘ non-propagating ’ mode, in which the couple 
moves along an 8-shaped curve fixed in space. Zabusky & McWilliams (1982) 
presented calculations of a point-vortex couple and a dipole represented by two pairs 
of point-vortices. These point-vortex calculations showed good agreement with 
numerical simulations of a modon solution, at least for the first oscillation. More 
recently, Kono & Horton (1991) presented an exact solution for the motion of the 
point-vortex dipole as well as numerical results of interactions of point-vortex couples 
in an inhomogeneous medium. Hobson (1991) studied the problem in phase-space 
terms and found that the dipole moving to the east has a stable trajectory, while that 
of a westward-travelling dipole is unstable. Makino et al. (1981) found the same 
behaviour in their numerical simulations of modons. However, they did not use the 
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terms stable or unstable trajectories, as pointed out by Nycander (1992), who refers to 
it as ‘tilt’ instability. 

In a combined analytical/numerical approach Swaters & Flierl (1989) examined the 
Ekman dissipation of an east-travelling dipole. They found that the distance between 
the vorticity extrema grows linearly in time, while the velocity of the structure decreases 
mono tonically. 

A gradient of the ambient vorticity can also be caused by variations of the depth of 
the rotating fluid. When the variations are linear and small, the gradient of ambient 
vorticity is approximately the same as that produced by the variation of the Coriolis 
parameter; this effect is sometimes referred to as the ‘topographic /I-effect ’. Carnevale 
et al. (1988) numerically studied the motion of dipoles over hills and ridges and found 
that under strong topographies the dipole broke apart, the cyclonic half moving uphill 
and the anticyclonic one downhill. The evolution of the independent halves after the 
splitting corresponds with the general behaviour of barotropic monopolar vortices on 
a P-plane, namely: cyclones move to the (local) northwest and anticyclones move to the 
(local) southwest. The problem of a single monopole on a P-plane has received 
considerable attention in the last decades, both in theoretical studies (Adem 1956), in 
numerical and laboratory experiments (Carnevale, Kloosterziel & van Heijst 1991), 
and in observational studies (see Robinson 1983). 

Experimental studies on dipolar vortices have concentrated mainly on situations 
without a gradient of ambient vorticity (p-effect absent). Nguyen Duc & Sommeria 
(1988) studied vortex couples in a thin layer of mercury, the flow being constrained to 
be two-dimensional by an external magnetic field. They obtained steadily translating 
dipoles; the symmetric dipoles (with zero net circulation) were seen to translate along 
straight paths, whereas the trajectories of asymmetric dipoles (with non-zero 
circulation) were found to be circular. Nguyen Duc & Sommeria also determined the 
relationship between the vorticity w and the stream function $ of the laboratory 
dipoles, and they found both linear and nonlinear (sinh-like) relations. Flor & van 
Heijst (1993) compared the Lamb model, which assumes a linear IP$ relation in the 
interior of the dipole, with their experimental observations of dipoles in a stratified 
fluid. The experimental results (vorticity distribution, dipole size and translation 
speed) show very good agreement with the Lamb dipole, both for dipoles with a linear 
w$ relation and for dipoles with a nonlinear relation. In their rotating-fluid 
experiments, Flierl et al. (1983) studied dipolar vortices that contained non-zero 
circulation, and accordingly travelled along a circular path. By taking into account the 
net circulation they obtained a modified Lamb dipole solution, which was found to 
agree well with their experimental results. 

The results to be discussed in the present paper concern the behaviour of dipolar 
vortices when a weak gradient of ambient vorticity is present in the system. The 
following section reviews the main results of the modulated point-vortex dipoles and 
shows that the meandering of the trajectory also arises for slightly asymmetric couples. 
After a brief description of the experimental technique in 6 3, experimental observations 
of dipole trajectories for different initial directions, and the corresponding evolution of 
velocity and size, are presented in $4. Flow measurements during one oscillation of the 
dipole are also presented. A comparison between west-travelling dipoles (WTD’s) and 
east-travelling dipoles (ETD’s) is made in 55, on the basis of both experimental 
observations and numerical results obtained with a vortex-in-cell method. The 
behaviour of an ETD for different values of /3 is discussed in $6. Finally, in $7 we 
discuss the results and draw some general conclusions. 
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FIGURE 1. Schematic representation of the point-vortex model of a dipole. 

2, The modulated point-vortex model 
For completeness, first the motion of a symmetric pair of point vortices on a P-plane 

is reviewed. The vortices’ circulations are modulated so that potential vorticity is 
conserved. The results are then extended to non-symmetric pairs. The case of a 
symmetric pair and a finite deformation radius can be found in the references 
mentioned in the previous section. 

In the absence of background vorticity the evolution of a group of N point vortices 
is governed by a system of 2N ordinary differential equations (e.g. Batchelor 1967): 

where ( x i , y i )  is the position of point vortex i with circulation yi, and rij is the distance 
between vortices i and j .  

Large-scale motions on a rotating sphere (the Earth) are fundamentally affected by 
the latitudinal variation of the Coriolis parameter f ,  which is defined as f = 252 sin 4, 
with 52 the Earth’s angular speed and 4 the geographic latitude. For motions occurring 
on scales smaller than a few degrees of latitude the Coriolis parameter can be 
approximated as a constant (local) value plus a linear variation in the meridional 
direction, i.e.f=f,+Py, wheref, = 252 sin #, and /3 = 20cos #,/R, with R the Earth’s 
radius. This approximation is known as the /3-plane model. 

Conservation of potential vorticity implies that the relative vorticity w of a vortex 
tube moving in the meridional direction changes, as expressed by the following 
equation : 

where D/Dt = a/at  + ua/ax + va/ay is the material derivative, and u and v are the 
velocities in the east ( x )  and north o/) directions, respectively. 

Although a potential point vortex is not a solution of (2.2) for the case P + 0, some 
insight into the /3-plane dynamics can be gained by solving (2.1) with the circulations 
being modulated according to the principle of conservation of potential vorticity. For 
that purpose it is necessary to assign a certain area to the ‘point’ vortex: under the 
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assumption that a point vortex represents a small patch of vorticity, the circulation 
equals the (uniform) vorticity multiplied by the area of the patch. If nL2 is the area 
associated with the point vortex, its circulation is then given by y = wnL2. 

Using (2.2) and conservation of mass one obtains 

~i = yoi + nL2Polni - Y J .  (2.3) 
In this expression yoi represents the initial latitude, at which the vortex has strength yoi. 

For a system of just two point vortices the distance r between them is a constant of 
motion. This fact makes it possible to describe the evolution of the pair with the 
position of the middle point and the direction of motion (figure 1). Substituting the new 
variables 

in (2.1), one obtains 

where the third expression is a general equation for the angular velocity of a pair of 
point vortices. 

For the case of an initially symmetric dipole y1 = - y 2  = yo, one obtains the 
following system of ordinary differential equations governing the motion of the pair : 

where 

d a  PL2 
-- - -7 ( t -  to>, = Usina; d t  

dt dt dt 
&I = u c o s a ;  - (2.6a-c) 

For a relatively weak p-effect with respect to the vortex circulation @rL2/y,  4 1) the 
translation velocity of the dipole can be approximated by U z U, = yn/2nr. 

Note that (2.6a) is a subsidiary relation and the whole evolution is determined by 
(2.6b) and (2.6c), which can be combined to yield a single equation for a :  

d2a L2 
-+-PU,sina = 0. 
dt2 r2 

The solution should satisfy the initial conditions a(0) = a,, which is the tilting angle, 
and a'(0) = 0, since the couple is initially symmetric. This is the nonlinear simple 
pendulum equation. A few results can be drawn immediately from its linearized 
version: for small values of a, the oscillations have a constant frequency (L / r ) (pU, )~  
and the wavelength h and the amplitude A of the oscillations are given by 

Proceeding with the analogy between the vortex pair and the pendulum, an ETD 
(a, = 0) clearly has a stable trajectory: when a small perturbation is imposed, small 
oscillations around the equilibrium latitude arise. On the other hand, a WTD (a, = n) 
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is unstable in the trajectory sense (see also Hobson 1991). This instability is also present 
in continuous modons and has important consequences for the stability of the structure 
itself (Makino et al. 1981; Nycander 1992). The effect on laboratory modons will be 
discussed in 5 4.1. 

Figure 2 shows numerical integrations of (2.1) and (2.3) with the corresponding 
regimes : (a)  wave-like trajectory, (b) 8-shaped trajectory and (c) cycloid-like trajectory. 
These regimes were originally described by Kawano & Yamagata (1977), although their 
paper seems to have escaped the attention of most of the investigators working in this 
field (most likely because the paper is written in Japanese). 

The condition of initial symmetry of the two point vortices can be relaxed 
(y2/y1 = a =+ - 1). An approximate equation with the same form as (2.7) can again be 
obtained, but in this case U z U,, = +(l -a) yo/2nr and the initial condition for the 
angular velocity changes to a’(0) = SZ,, = (1 + a) yo/2nr2, owing to the asymmetry of 
the initial dipole. The same oscillatory behaviour arises for SZ; < (L2/r2) /3U(cos a. + 1). 
However, in this case the equilibrium latitude is not the latitude of the initial position. 
The dipole meanders around a line located to the north of the initial position if the 
positive vortex is initially stronger (figure 3b). Likewise, if the negative vortex is 
stronger the equilibrium latitude is located to the south of the initial position (figure 3 a). 
If SZ; > (L2/r2) PU(cos a. + 1) the dipole remains always asymmetric and rotates 
around a point that moves westward (figure 3c, d ) .  

It was brought to our attention by Professor Vyacheslav V. Meleshko that the 
equations of motion discussed here are analogous to those describing the equilibrium 
shape of a thin elastic rod bent by a combination of forces and force couples applied 
at its ends (Love 1944). The path of an initially symmetric dipole is analogous to the 
shape of the rod when only forces are applied at its ends. On the other hand, an 
asymmetric dipole moves along a trajectory whose shape is similar to that of the bent 
rod when both forces and couples are applied at its ends (see figures 48 to 56 in Love 
1944). 

It is appropriate to make some comments on the two lengthscales r and L present 
in the problem, being the distance between the two point vortices and the radius of the 
area associated with each ‘point vortex’, respectively. It is stressed that while being 
arbitrary, L must be much smaller than r, otherwise the discrete representation of the 
vortex patch is not accurate. Also, L must be finite, otherwise the modulation 
mechanism does not work. 
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FIGURE 3 .  Trajectories of initially non-symmetric point-vortex dipoles on a P-plane. (a) Slightly 
negative net circulation causes meandering around a line southward of the equilibrium latitude, (b )  
slightly positive net circulation causes meandering around a line northward of the equilibrium 
latitude, (c) strong negative circulation causes anticyclonic librations around a point that drifts to the 
west, and ( d )  strong positive net circulation produces cyclonic librations and westward drift. 

The regimes obtained with this simple model do not depend on the special condition 
of having an initially symmetric dipole. However, several effects are neglected in the 
model: (i) it is assumed that each 'point' vortex has a finite core, but its deformations 
are not taken into account; and most importantly, (ii) the effect of relative vorticity 
being generated by advection of ambient fluid has totally been neglected in the model. 
Naturally, the question arises of whether dipolar vortices in real flows would show 
phenomena similar to those described above. In order to provide an answer to that 
question, we have carried out a study of dipolar vortices in the well-controlled 
laboratory environment. 

3. Experimental arrangement 
3.1. Laboratory simulation of a ,&plane 

It is well known that a smoothly varying bottom topography in a rotating system 
produces an equivalent result to the variation of the Coriolis parameter for a rotating 
sphere, usually referred to as the topographic ,&effect. If we consider the shallow-water 
equations in a rotating system (Laplace's tidal equations), the following conservation 
relation can be obtained : 

(3.1) 

where o is the relative vorticity, f ,  = 252 is twice the constant rate of rotation and 
h(x,y) is the depth of the fluid. 
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Let h have a small linear variation in some direction, say y ,  so that the fluid depth 
as a function of position is given by h(y)  = h,(l -sy), with s a small parameter. 
Substituting this expression in (3.1) and expanding the result in a Taylor series one 
obtains 

where a small Rossby number (w / f ,  @ 1) is assumed. This equation is equivalent to 
(2.2), showing that to this order of approximation the dynamics of a rotating fluid in 
a container with a linearly varying bottom topography is equivalent to that of a fluid 
on a /3-plane. Obviously, the equivalent /3-value is /3 = sf,. 

3.2. Apparatus 
The experiments were carried out in a rectangular tank of horizontal dimensions 
100 x 150 cm and 30 cm depth mounted on a rotating table. The angular speed of the 
system could be varied continuously and was in most experiments taken as 
52 = 0.56 s-l, so that the Coriolis parameter f= 1.12 s-l. The working depth of the 
fluid was varied from 15 to 20 cm, and a false bottom was raised 4-8 cm along one of 
the long sides to provide the topographic ,&effect. With these parameter settings the 
equivalent value of /3 measured approximately 0.25 m-l s-'. This choice of parameter 
values was made in order to achieve two effects : (i) a dynamically relevant gradient of 
background vorticity without affecting the two-dimensionality of the motion ; and (ii) 
a column of fluid long enough for the effect of the bottom Ekman layers to be negligible 
on the timescale of the experiment, e.g. the time required for the dipole to cross the 
tank (in the absence of bottom topography typically 10-20 rotation periods). Exact 
parameter values of particular experiments are given where appropriate. 

3.3. Dipole generation 
The experiment was started by filling the tank to the desired height. Then the fluid was 
spun-up to an angular velocity of 0.56 s-l, a process that takes typically a few minutes. 
In order to avoid even very weak background flows, however, in all experiments the 
fluid was allowed to spin-up for approximately 30 minutes. A columnar dipole vortex 
was generated by slowly moving a small, bottomless cylinder of 8 cm diameter in a 
straight line relative to the rotating tank, while gradually lifting it (figure 4). By moving 
the cylinder very slowly (10-15 cm s-l) and keeping its axis parallel to the axis of 
rotation, one guarantees that the forcing is almost two-dimensional. The vorticity 
generated by the motion of the cylinder accumulates in a dipolar structure in the wake 
of the cylinder. This dipolar flow is confined in a vertically aligned Taylor column, a 
feature well-known in rotating fluids. After typically 1-2 rotation periods the 
organization of the vortex flow is completed, and the mature, fairly symmetric dipole 
travels through the fluid along an almost straight line. 

The radius of deformation R, = (gh)i/f varied with the experimental configuration 
from 1 to 1.25 m. These values are much greater than the typical size of the dipole 
(0.1 m). A Rossby number for the generation process is defined as Ro = U/252R, with 
52 the rotation rate of the system and U and R the velocity and radius of the cylinder, 
respectively. According to the parameters given above this Rossby number is of order 
2-3. A Rossby number for the resultant dipolar structure is defined with U as the 
maximal velocity and R as the distance between the points of the extremal values of 
vorticity. This Rossby number is measured to be of order 0.14.2 when the dipole 
reaches a mature state, in all the experiments discussed in this paper. 
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FIGURE 4. Schematic view of the experimental arrangement. The tank rotates with a constant angular 
velocity a, and the ,&effect is provided by a sloping bottom (with shallow being equivalent to 
‘north’). Dipoles are generated by dragging a small bottomless cylinder (8 cm in diameter) through 
the fluid while lifting it as indicated in the figure. The typical speed of the cylinder is 0.15 m s-l. 

The generation technique described above proved to be superior to the injection of 
a turbulent jet, since in that case the forcing is essentially three-dimensional. The jet is 
deflected by the Coriolis force and tends to move anticyclonically in a circular 
trajectory. One of the two-dimensional products of this process is an asymmetric dipole 
(Flier1 et al. 1983). 

3.4. Flow visualization 
In a first series of experiments dye (fluorescine or terasil blue) was added to the fluid 
within the small cylinder before dragging it through the ambient fluid in the rotating 
tank. These experiments provided important qualitative information about the 
adjustment process and allowed the two-dimensionality of the motion to be verified. 
Indeed, the dipole moved as an almost circular cylinder (Taylor column) through the 
ambient fluid, carrying most of the dye with it. In each experiment the flow was 
recorded photographically (photographs were taken at intervals of typically 5-1 5 s) by 
a camera mounted in the rotating frame about 150 cm above the free surface of the 
fluid. 

Dye experiments were done mainly to determine the trajectory of the dipole as a 
function of the initial direction, and to estimate the dipole’s size and velocity during its 
evolution. This information was obtained by projecting the negative film on a screen 
and plotting the centres of the dye patterns. Each centre is determined from the spiral 
structure within each half of the dipole and from the shape of the whole vortex. The 
distance between the centres is considered as a measure of the size of the dipole; 
hereafter this distance will be referred to as the ‘size’ of the dipole. From a series of 
positions the linear displacement as function of time can be obtained, providing the 
integrated velocity as a function of time. 

3.5. Flow measurements 
Flow measurements were made from photographic streaks of small (1 mm diameter) 
paper particles floating on the free surface, and sprinkled randomly all over the tank 
before a dipole was generated. In such experiments, pictures were taken every 15 s and 
the exposure time was varied from 1 s at the beginning of an experiment to 3-4 s at 
later stages. The typical duration of an experiment was 20-25 rotation periods. 

The velocity field is measured from the lengths and orientations of particle streaks, 
which are approximated by straight line segments. With the help of a digitization table 
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the coordinates of the start and end points of the streaks are loaded into a personal 
computer. The distance between these points divided by the exposure time gives the 
mean local velocity of the fluid. Then the velocity field is interpolated onto a regular 
grid of 30 x 30 points by using cubic splines (for details of this technique, see Nguyen 
Duc & Sommeria 1988). 

The analytic functions that give the values of the velocity components u and u on 
each grid point can then be differentiated to obtain the vertical component w of the 
vorticity in the grid points: 

(3.3) 
a0 au 
ax a y  

w = _ _ _  

The stream function $ is computed from the vorticity field by numerically solving the 
Poisson equation : 

The boundary conditions for $ are obtained (within an arbitrary constant) from the 
line integral of the normal velocity on the edge. 

The stream function y?’ in a frame of reference moving with the couple can be 
calculated by simple transformation : 

VZ$ = - w .  (3.4) 

$’ = $-- U,y+ U , x  or $’ = $++Q’R2, (3.5) 

with U, and U, being the components of the translation velocity, Q’ the angular 
velocity of the dipole and R the distance to the dipole’s centre of rotation. In the case 
of pure linear translation the vorticity remains unchanged, whereas a constant value 
(2Q’) must be added in the case of a rotational motion. 

The parameters needed to correct for rotation or linear translation are obtained 
from photographs taken before and after the one being analysed. From this sequence 
of pictures, one can estimate the magnitude and direction of the velocity, or the angular 
speed and the apparent centre of rotation. Throughout the following sections only 
the corrected stream function yY will be used, but the prime will be omitted to simplify 
notation. 

4. A meandering dipole 
4.1. Qualitative observations 

The basic mechanism that determines the trajectory of a dipole on a /I-plane has 
already been explained by Makino et al. (1981). In order to clarify some of the 
laboratory observations to be discussed later, the argument will be repeated here in 
terms of fluid-depth variations. 

The dipolar vortex was generated by moving the cylinder along a straight line in a 
‘northern’ direction, i.e. into shallower parts of the tank. Once the dipole has reached 
a mature state (figure 5a), it tends to move in a straight line to the northeast, where the 
fluid is shallower. Owing to the background rotation the two dipole halves experience 
asymmetric effects, as can be understood from (3.1): the cyclonic vortex (w > 0) 
becomes weaker while the anticyclonic one (w < 0) becomes stronger, resulting in a 
trajectory curved in a clockwise sense. The vertical squeezing also causes the dipole to 
widen, so that the vorticity extrema move slightly apart and the translation velocity 
decreases. The dipole reaches a maximum size and a maximum circulation asymmetry 
at its northernmost position (figure 5b). The clockwise rotation brings the dipole 
southwards, and the asymmetry gradually diminishes. The dipole recovers its zero net 
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FIGURE 5. Sequence of plan-view photographs showing the meandering of a dipolar vortex on a 
(topographic) @-plane. The dipole was created as indicated in figure 4 and it travelled initially towards 
shallower fluid (top of the pictures). The images were taken at times (a) t = 3.1T, (b) 6.7T, (c) 8.8T, 
(d) 12.lT, (e) 15.3Tand cf) 29.7Tafter withdrawing thecylinder, with T = 11.1 s the rotation period 
of the turntable. Experimental parameters:f= 1.13 s-l, h, = 0.18 m, s = 0.22 m-', /3 = 0.25 m-l s-l. 

circulation when it crosses the equilibrium line, where the height of the fluid column 
is equal to its initial value (figure 5c).  Because of its own momentum the dipole moves 
further into deeper regions ('south') so that the column of fluid is stretched further. 
Owing to this stretching, the cyclonic half (w > 0) becomes stronger while the strength 
of the anticyclonic part of the dipole decreases in magnitude. As a result the dipole's 
trajectory curves in an anticlockwise sense (figure 5 4 .  The stretching also causes the 
vorticity extrema to get closer, and as a consequence the translation speed of the dipole 
increases at this stage. After reaching its southernmost position (figure 5 e),  the dipole 
moves back to its equilibrium depth (figure 5f), and the meandering process continues. 

Experimentally, we have not been able to observe more than one cycle of the 
oscillatory path, because the dipole either reached the wall after one meandering or it 
was observed to split into two monopolar vortices. The latter feature will be discussed 
in more detail in 96. 
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4.2. Flow measurements 
Results equivalent to those described in the previous section are obtained when the 
dipole moves southward initially, as can be seen from the flow evolution (figures 6 9 ) .  
When it reaches a mature state at time t = 1.77T, with T the rotation period of the table 
(T  = 1 1.3 s), the dipole moves in an approximate southeast direction. The cyclonic half 
is stronger, resulting in an anticlockwise deflection of the dipole’s trajectory. The 
density of the vorticity contours in figure 6a shows a clear asymmetry between the two 
dipole halves. The streamline pattern q9 = const (see figure 6b) shows the same 
asymmetry; the centre of the rotational dipole motion at this stage is also visible in the 
upper right corner of the figure. 

At t = 4.42T the dipole reaches its southernmost position; therefore a maximum 
asymmetry is observed in the contours of vorticity (figure 7a) and a decrease of size 
with respect to the previous stage (cf figure 6a). The same effects can be observed in 
the streamline pattern (figure 7b). Also, the curvature of the dipole trajectory has 
increased at this stage, as can be observed from the centre of rotation, which has moved 
closer to the dipole. 

As the dipole returns to its equilibrium depth (at t = 7.96T) the asymmetry is 
reduced, as can be observed from the vorticity distribution (figure 8 a). The dipole size 
increases and the centre of rotation moves farther away (figure 8b). However, the 
dipole still has positive circulation and its path is curved in an anticlockwise sense. 

Finally, at t = 15.93T the dipole reaches its northernmost position, as shown in 
figure 9. The clockwise rotation and the vorticity contours reveal that the dipole has 
acquired a negative net circulation (figure 9a). The centre of rotation is now located 
to the south (figure 9b). The low density of contour lines in both the vorticity and the 
stream function plots indicates the decay of the dipole, which is most likely produced 
by two mechanisms associated with the topographic ,&effect. First, the generation of 
relative vorticity in the wake of the dipole, and second, the entrainment and 
detrainment of ambient fluid (or ‘breathing’, Nycander & Isichenko 1990). The 
observed evolution of similar dipoles on thef-plane shows that other decay mechanisms 
like horizontal diffusion or spin-down induced by the Ekman layers are insignificant on 
this timescale (approximately 15 rotation periods). 

The evolution of the total relative circulation within the dipole illustrates a few 
important characteristics. The circulation is obtained by a (discrete) surface integral of 
the vorticity values. The ratio e = l(y+/y-)l, with y+ the positive circulation and y- the 
negative circulation in the dipole, changes as the position of the dipole moves in a 
meridional direction. At t = 1.77T (figure 6) the ratio e measures 1.23, showing that 
there is an excess of positive vorticity and therefore an anticlockwise rotation. In the 
southernmost position (figure 7) the circulation reaches its most positive value and 
E = 1.488. Afterwards the asymmetry starts to decrease; at t = 7.96T(figure 8) e = 1.16, 
thus the dipole still has positive net circulation. Finally, when the anticyclonic part 
becomes stronger (figure 9), E = 0.75. Naturally, the qualitative evolution of the ratio 
agrees with the observed trajectories. A comparison with the modulated point-vortex 
model is made using (2.3) and assuming that the dipole was initially symmetric and 
moved in a southward direction (like the generating cylinder). The initial circulation is 
yo = i(y+-y-) as computed at t = 1.77 and the experimental p = 0.26 m-l s-l. A free 
parameter used to ‘tune’ the model is L, the radius of the area associated with the point 
vortices. The values obtained for e, being 1.2, 1.63,l. 14 and 0.74, respectively, compare 
very well with the corresponding values measured in the experiment (see above). The 
value of L used to obtain this approximation is 9.44 cm, which is of the same order as 
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FIGURE 6.  Measured flow characteristics of a dipolar vortex on a P-plane at t = 1.77T, with T = 11.3 s 
the rotation period of the turntable. The dipole moved initially to the south and subsequently 
described a meandering path. The graphs represent (a) vorticity contours (contour interval 0.1 s-'), (b)  
stream-function contours (contour interval 2 cm2 s-') corrected for the observed motion of the dipole, 
(c) distribution of vorticity along a line crossing the points of extremal vorticity values, and ( d )  the 
w-+ relation, obtained by plotting the vorticity value against the stream-function value of every grid 
point in the interior of the dipole. Experimental parameters : f = 1.1 1 s-l, h, = 0.17 m, s = 0.23 m-', 
,8 = 0.26 m-' s-l. 

the distance r between the points of maximal vorticity. Clearly, the condition L 4 r ,  
which permits a discrete representation of the vorticity in the point-vortex model, is not 
satisfied. A smaller L (3 cm) generates values of the ratio e (1.02, 1.05, 1.01 and 0.97, 
respectively) closer to one than the values measured in the experiment. However, the 
qualitative evolution of e is the same in the experiments and in the point-vortex model. 

A remarkable feature in the vorticity distributions is the presence of a small ring of 
oppositely signed vorticity around the dipole. The presence of this ring is visible in the 
form of small humps in the vorticity sections, especially in the first two stages (figures 
6c and 7c). The shielding ring is caused by the advection of ambient fluid in a 
meridional direction, and its influence on the dynamics of the dipole will be discussed 
in 95. 

A stationary solution of (2.2) satisfies q = F($), where q is the potential vorticity 
q = w + Py, $ is the stream function in the system moving with the dipole and F is an 
arbitrary integrable function. Strictly, in the case of an oscillating dipole a stationary 
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FIGURE 7. As figure 6 ,  but now for t = 4.42T. 

state is never established : the total circulation oscillates between positive and negative 
values and the translation velocity changes continuously in direction and in magnitude. 
In spite of this, values of vorticity and stream function were computed in a frame in 
which the dipole is ‘stationary’, by correcting for the instantaneous displacement of the 
structure. 

By plotting the vorticity against the stream function for every node of the 
interpolation grid, the resultant graph provides information about how close the dipole 
is to a stationary solution: if the points collapse onto a single line a well-defined 
functional relationship exists between vorticity and stream function. The scatter 
around the line can be due to experimental errors but more likely because the structure 
is not stationary. Furthermore, the form of the curve provides information about the 
nature of the solution. 

The scatter plots presented here are constructed only with points in the interior of 
the vortex structure; points from the exterior field all collapse onto the horizontal axis 
(w = 0). Formally, one should plot the (corrected) potential vorticity q = w +Py, rather 
than the corrected relative vorticity w ,  as a function of $. In all experimental results 
reported here, however, the term PI, with I the radius of the dipole, is at least ten times 
smaller than w (j3 = 0.3, I = 0.1, 0.2 < w < I), so that w is a good approximation of q. 
The difference between scatter plots w($)  and q($) (not shown here) is in fact hardly 
noticeable. 
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FIGURE 8. As figure 6, but now for t = 7.96T. 

A linear relation between w and $was observed for the dipole at times t = 1.77T and 
4.42T (figures 6 d  and 7 4  respectively). The change in the slope is a consequence of the 
stretching of the dipole and can be explained as follows. Most analytical dipolar 
solutions of the equivalent barotropic equation (as well as the Lamb dipole) are based 
on an assumed linear relation between vorticity and stream function, i.e. w = k2$ (see 
Flier1 1987). Under this assumption, the solutions must satisfy the dispersion relation 
ka = 3.83, where a is the radius of the dipole and 3.83 is the first zero of the first-order 
Bessel function of the first kind, which is one of the building blocks of the modon 
solutions. 

For the laboratory dipoles the radius a is determined by using the closed streamline 
of the corrected stream-function plot, and then k is calculated using the dispersion 
relation. This result should agree with the values of k obtained from the scatter plot 
(the slope is the square of k) .  Experimental dipoles in the absence of a sloping bottom 
(f-plane) have been observed to satisfy these criteria. For the experiment being 
discussed here, it is observed that at t = 1.77T the radius is a = 11.04 cm, giving 
k = 0.34. This corresponds very well with the value derived from the scatter plot 
(figure 6 4 ,  k = 0.339. At t = 4.42T, the dipole radius a has decreased to 8.88, giving 
k = 0.43 ; this value is again in good agreement with the value k = 0.447 obtained from 
the scatter plot (figure 7 4 .  At the later stages, t = 7.96T and 15.937; a weak 
nonlinearity in the w$ relation is observed (figure 8 d  and 9 4 .  The fitted lines give the 
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FIGURE 9. As figure 6 ,  but now for t = 15.93T. 

best approximation of the slope of the two branches. The values of k obtained from 
the scatter plots are approximately one half of those obtained from the observed radius 
of the dipole (using the dispersion relation ka = 3.83). The disagreement is most likely 
associated with the nonlinearity of the w+ relation. 

4.3. Trajectory as a function of the tilting angle 
The squeezing and stretching mechanism described at the beginning of this section is 
active for every initial orientation of the dipole axis. However, its effect is very different 
on dipoles moving initially at angles greater than in  (i.e. dipoles with a westward 
component in their motion) and on dipoles moving at angles smaller than in (dipoles 
with an eastward component). 

When its initial angle is less than in the dipole acquires an asymmetry of the proper 
sign to pull it back to its equilibrium latitude. The smooth oscillation of a dipole with 
initial northeast motion appears in figure lO(a), and similar trajectories can be seen in 
figures 10(b) and 1 0 0  for dipoles released in northward and southward directions, 
respectively. In these three examples the direction of the dipole changes in such a way 
as to make the structure return to its equilibrium latitude. Because of its own inertia 
the dipole overshoots and the process repeats. 

Dipoles with tilting angles greater than an move initially away from the equilibrium 
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FIGURE 10. Observed dipole trajectories for different initial angles. The dots represent the position of 
the dipole centre at selected time intervals. Arrows indicate initial and final directions of the observed 
dipole translation. Since the median depth h, of the fluid in the dipole evolution varies from one 
experiment to another (in the range 15-18cm) the /%effect changes accordingly in the range 
0.25-0.3 m-l s-l. 

latitude before finally returning to it. Figures 1O(c) and lO(e) show examples of initially 
northwest- and southwest-moving dipoles. Figure 10 (d) shows the trajectory 
instability of a dipole shot in a westward direction. In the first two examples the dipoles 
make looping excursions in a meridional direction before returning to their equilibrium 
latitude, while in the latter example (cf. figure 10d) the dipole breaks up before being 
able to return to its initial latitude. 

4-2 
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FIGURE 11. Sequence of measured linear displacement (solid dots) and size (open dots) as a function 
of time (scaled by the rotation period T = 11.2 s), for the dipoles shown in the corresponding frames 
in figure 10. The dipole size is normalized with its size after reaching a mature state (typically 3 4  
revolution periods after withdrawal of the generating cylinder). The dipole displacement is 
normalized with the maximum displacement observed in a particular experiment. 

These results confirm numerical and analytical predictions by previous investigations 
(e.g. Makino et aE. 1981 ; Hobson 1991 ; and Nycander 1992) that an ETD corresponds 
to a stable equilibrium while a WTD represents the unstable equilibrium. 

The evolution of the velocity of the six experiments discussed above can be deduced 



Dipolar vortices on a topographic /I-plane 97 

from the linear distance travelled by the dipole as a function of time. For the individual 
experiments of which the observed trajectories are shown in figure 10, the linear 
displacement of the dipole between successive photographs was measured, and the 
results (represented by solid dots) are shown in figure 1 1. A common feature of all cases 
is that the velocity is approximately constant during the first stages of the evolution, 
but at later stages it decreases rapidly. Small perturbations can also be observed, which 
are likely to be produced by two effects. Firstly, the alternating squeezing and 
stretching of the vortex dipole moving into shallower and deeper areas, respectively, 
causes oscillations of the velocity magnitude with the same frequency as the 
meandering motion: the squeezed dipole moves slower than the stretched one. 
Secondly, the translation velocity of the symmetric dipole is slightly larger than when 
the vorticity structure is symmetric; this perturbation cycle has a frequency twice that 
of the meandering cycle. A few attempts were made to extract these perturbation 
velocities from the data sets shown in figure 1 1. Although in some cases one can easily 
observe the cyclic effects described above, most of the results are too noisy to be 
conclusive. 

The alternating squeezing and stretching that the dipole experiences when moving 
into shallower and deeper areas, respectively, also causes oscillations in the dipole’s 
size. Although the dipole shows a gradual overall increase in size, the oscillatory 
variations can be clearly recognized in the size measurements for the individual 
experiments of figure 10, which are represented by the open dots in figure 11. A 
comparison with the corresponding trajectory plots (figure 10) confirms that the 
oscillations are the result of displacements in a meridional direction. For example, the 
southward part of the dipole’s trajectory in figure 10(b) corresponds with decreasing 
size (see figure l l b ) ,  whereas the dipole regains approximately its original size after 
returning to the initial latitude. In figure lO(a) and 1 1  (a)  one observes a fast growth 
when the dipole moves northward, followed by a small decrease when it starts to move 
to the south. 

5 .  WTD versus ETD 
An important result from both numerical and analytical calculations of a tilted 

modon (e.g. Makino et al. 1981; Nycander 1992) and its point-vortex counterparts is 
the dramatic difference between ETD’s and WTD’s. While dipoles of the former class 
are stable and perform small oscillations when perturbed, the WTD’s are unstable : 
even an extremely small perturbation causes them to travel over large distances in a 
meridional direction. This difference was also observed in the laboratory. It was easy 
to obtain a dipole travelling to the east along an almost straight line. However, we 
never succeeded in getting a dipole moving to the west in a similar fashion. Very soon 
these dipoles deviated and drifted a long distance in northern or southern directions 
before breaking up or colliding with the tank walls (see e.g. figures 10dand 10e). Note 
also that in (2.2) steady ETD solutions exist while WTD’s always radiate Rossby 
waves, which were experimentally observed as very weak cells in the wake of the dipole. 

A few more differences were observed between eastward- and westward-travelling 
dipoles. The ETD’s were always larger and slower then the WTD’s, which were 
compact and travelled relatively fast. Figure 12(a) shows a typical example of the 
measured size and linear displacement of an ETD : an almost linear growth of the size 
is clearly observed while the velocity decreases monotonically in a gentle manner. In 
the evolution of a WTD (figure 12b) two stages can be distinguished: in the first stage 
the dipole experiences a decrease in size and has an almost constant (high) velocity, 
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FIGURE 12. Observed dipole displacement and dipole size as in figure 11, but now for: (a) an 
east-travelling dipole (ETD), experimental parameters are fa = 1.12 s-l, h, = 0.17 m, s = 0.23 m-', 
and p =  0.258 m-ls-l, and (b) a west-travelling dipole (WTD), experimental parameters are 
f, = 1.12 s-l, ha = 0.19 m, s = 0.21 m-', and p = 0.235 m-' s-'. 

FIGURE 13. Schematic diagram showing the generation of relative vorticity by advection of ambient 
fluid. The open arrow indicates the translational motion of the dipolar vortex, the thin arrow shows 
the advection of ambient fluid induced by the moving dipole, and the solid arrow illustrates the 
tendencies of the dipole halves induced by the secondary vorticity field. 

while in the subsequent stage the dipole grows and its drift velocity decreases. This 
second stage occurs when the dipole has moved to the south as a result of the instability 
of the westward trajectory. A WTD that drifts to the north shows the same decrease 
in size (see figures 10d and 11 d) in spite of the squeezing that results from the motion 
towards shallow water. Pictures of streaklines using exposure times of up to 30 s (not 
shown here) reveal the presence of weak cells of motion (Rossby waves) in the wake 
of a WTD, while no clear structure is observed in the wake of an ETD. 

The observed differences between ETD's and WTD's can be explained in terms of 
relative vorticity generation in the fluid exterior to the vortex dipole, due to advection 
of ambient fluid. If the dipole moves in a zonal direction the sign of the generated 
vorticity is as follows: in front of the dipole fluid located above the symmetry line 
moves northward and acquires negative vorticity; on the other hand, below the 
symmetry line the fluid moves southward and acquires positive vorticity. 

Downstream of the dipole the effects are opposite: positive vorticity is generated 
above the symmetry line and negative vorticity is produced below this line. The 
schematic diagrams of figure 13 illustrates the process just described for both an ETD 
and a WTD. According to this mechanism the upstream side of the ETD becomes 
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‘ shielded’ by patches of opposite relative vorticity, whereas patches of matching 
vorticity can be expected to be formed in its wake. Besides decreasing the translation 
speed of the ETD, the secondary vorticity distribution has another important effect: 
the oppositely signed vorticity shield at the upstream side gives the flow-in 
combination with the primary vorticity distribution - a double-dipole character that is 
symmetric with respect to the axis. As indicated by the solid arrows, the upper dipole 
has a tendency to travel to the north-west, whereas the lower dipole will tend to move 
to the south-west. In other words the secondary vorticity structure has a tendency (i) 
to decrease the translation speed, and (ii) to tear the ETD halves apart. In the case of 
the WTD the advection of ambient fluid results in a band of relative vorticity, as 
illustrated in figure 13(b). In contrast to the ETD, however, the secondary vorticity 
upstream of the WTD is correlated with the primary vorticity distribution, whereas it 
is anticorrelated at the downstream side of the WTD. As indicated by the solid arrows, 
the secondary vorticity structure will most likely tend to enhance the compactness of 
the WTD and increase its translation speed. These are short-tern effects and should be 
present before a Rossby wave field is established. 

In order to verify this conjecture, a numerical simulation using a vortex-in-cell 
technique was carried out. Except for the modulation of the circulation the method is 
essentially that described by Christiansen (1973), whose paper should be consulted by 
readers interested in details of the method. Only the main features are briefly described 
here: (a)  the region of interest is divided into a large number of cells and (b) each point 
vortex is supposed to have a finite core so that the (uniform) vorticity in this surface 
equals the circulation of the point vortex divided by the area. 

For every time step the following procedure is carried out: 
(i) At the beginning of the time step the position of each particle in the mesh is 

determined and its vorticity is assigned to the four closest mesh points using a bilinear 
interpolation. 

(ii) The vorticity distribution found in step (i) is used as the source term of the 
Poisson equation (3.4), the solution of which gives the stream function in the region. 

(iii) The stream function thus found is differenced to give an approximation of the 
velocity on the mesh points. The velocity of each particle is found using the 
interpolation factors used in step (i). Then each particle is allowed to move with the 
velocities just calculated for a short time interval. 

(iv) Once the new position of each particle is known, its new circuzation is calculated 
using (2.3) and the cycle repeats from step (i). 

In view of the continuous vorticity distributions observed in the laboratory 
experiments as discussed in $4.2 (see also figures &9), the simulations were initialized 
by using Lamb’s dipole solution. The flow domain was covered by a 33 x 33 mesh, with 
periodic boundary conditions at the meridional boundaries, and free-slip conditions at 
the latitudinal boundaries of the domain. More than 10000 point vortices were evenly 
distributed over the whole flow domain, although initially only a small number of them 
(viz. only the ones lying inside the Lamb dipole) have non-zero relative vorticity. The 
others (lying exterior to the Lamb dipole) are so-called ‘ghost vortices’ that become 
active as soon as they are advected in a meridional direction, according to equation 
(2.3). 

The results of the simulations are presented in figure 14. In the following discussion 
distances are given in units of the initial diameter of the dipole and time in units of the 
time it takes for the Lamb dipole to travel that unit distance. The graphs on the left 
(frames a, b and c) show the evolution of the flow field associated with the ETD. At 
time t = 0.9 (figure 14b) the dipole has moved a distance of 0.5 units to the east, and 
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FIGURE 14. Numerical simulations of the evolution of an ETD (a-c) and a WTD (d-f) using a vortex- 
in-cell technique. The flow is initialized by taking a Lamb dipolar vortex; boundary conditions are 
free-slip at the latitudinal walls and periodic in the meridional direction. Vorticity distributions are 
shown at t = 0, 0.9T and 1.8T, where T is here the time required for the Lamb dipole to travel a 
distance equal to its diameter, in the absence of the ,&effect. 

has acquired a band of anticorrelated vorticity at its sides; also, one observes the 
formation of tails at the downstream side, which denote the presence of secondary 
vorticity, which is correlated with the primary dipole. At t = 1.8 (figure 14c) the 
asymmetric structure of the secondary vorticity field is clearly visible. At this stage the 
ETD has only travelled over a relatively small distance, and shows a considerable 
widening (in comparison with the initial state shown in figure 14a). Although the 
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simulation was stopped at this stage, the flow behaviour thus found agrees very well 
with the conjectured ETD behaviour discussed above. 

The graphs in the right-hand column of figure 14 (frames d, e andf) show the 
numerical results for the evolving vorticity distribution associated with the WTD. It is 
easily observed that the WTD quickly acquires a very compact structure, with tails 
forming at its downstream side. The compactness of the vorticity structure gives rise 
to a high translation speed, as can be seen by comparing the WTD graphs with the 
corresponding graphs of the ETD evolution. At t = 0.9 (figure 14e) the WTD has shed 
two patches of oppositely signed relative vorticity, which are the result of the advection 
of surrounding fluid, as schematically indicated in figure 13(b). At t = 1.8 (figure 14f), 
the WTD has re-entered the domain at the right (the domain is periodic in the 
east-west direction), and has become even more compact. All these WTD features 
confirm the conjectured behaviour outlined above. 

6. ETD’s for different values of /3 
The results in the previous section show that the value of is of primary importance 

since the magnitude of the secondary vorticity is of order Pl, where 1 is the radius of 
the dipole. As P is increased the value of the generated vorticity gets closer to the value 
of the dipole’s own vorticity, thus producing a faster growth and eventually a breakup 
of the dipole. On the other hand, as /3 decreases, the value of the vorticity generated 
decreases in comparison with that of the dipole, and for a vanishing p this effect would 
not be present at all. Indeed, it was observed that on af-plane the velocity of the dipole 
remained approximately constant until the dipole reached one of the walls after 
crossing the tank (figure 15 a), whereas the size of the structure showed variations but 
remained very close to its initial value. 

For a moderate /3 value (0.25 m-l s-l) the measured variation of size and velocity of 
an ETD is shown in figure 12(a), while the same quantities are displayed in figure 15 (b) 
for a somewhat greater value (p = 0.352 m-’ s-’). Obviously, the qualitative behaviour 
of the dipole structure is much the same. In the case of a relatively strong /3 
(0.42 m-l s-l) the dipole is observed to split into two monopolar vortices (figure 16a). 
While gradually becoming axisymmetric, these monopolar vortices subsequently start 
to evolve independently, the cyclonic one (represented by the upper dots) moving to the 
northwest and the anticyclonic vortex (lower dots) drifting to the southwest, in 
accordance with the observations reported by Carnevale et al. (1991). The evolution of 
the linear displacement (solid dots) and the distance of the vortex centres (open dots) 
before, during and after the dipole’s breakup is shown graphically in figure 16(b). The 
horizontal part of the curve representing the linear displacement corresponds to the 
moment when the eastward motion is reversed into a westward one, and can be 
considered as the point of actual breakup. After the breakup both halves are observed 
to drift at a similar speed in a westward direction with an additional small meridional 
velocity component (northward for the cyclonic vortex and southward for the 
anticyclone). 

6.1. Flow measurements of a splitting ETD 
In order to investigate the dipole splitting process in more detail, an experiment was 
carried out for a strong p-effect (p = 0.52 m-l s-l). Again, the initial dipole was 
directed to the east. The formation of the dipolar structure was completed 
approximately 4-5 revolution periods after the lifting of the generating cylinder. The 
spatial distributions of the relative vorticity and the (corrected) stream function of the 
flow at this stage ( t  = 5.27T) are presented in figure 17(a, b). In comparison with the 
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FIGURE 15. Observed dipole displacement and dipole size as in figure 1 1, but now for (a) a dipole on 
anf-plane (experimental parametersf= 1.12 s-l, ha = 0.2 m) and (b) an ETD on a moderate P-plane 
(,8 = 0.352m-' s-',f, = 1.1 s-l, h, = 0.17 m, s = 0.32m-l). 
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FIGURE 16. Laboratory observations of the breakup of an ETD: (a) trajectories of the dipole's vortex 
centres, the cyclonic half being represented by the upper dots and the anticyclonic half by the lower 
dots, and (b) the linear displacement (solid dots) and the size of the dipole (open dots) as a function 
of time. Experimental parameters arefa = 1.12 s-l, h, = 0.16 m, s = 0.375 m-l, and /3 = 0.42 m-' s-l. 

previously shown dipoles (see figure &9), the size of the dipolar vortex is now relatively 
large, and the two halves are not compactly attached as before. At this stage the 
structure moved slowly eastward, in a direction perpendicular to the line joining the 
two vorticity extrema. At a later stage ( t  = 14.5T) the separation between the two 
halves has clearly increased (figure 18a, b), and the dipole's breakup was in fact 
completed. At this point a weak westward drift of the two halves was observed. 

The vorticity distribution along the line joining the vortex centres shows that at the 
earlier stage t = 5.27T (figure 17c) the splitting was already in progress: a small kink 
is clearly visible in the centre of the dipole, which is absent in the weak-P dipoles (see 
figure 69 ) .  These observations agree with the numerical results of Couder & 
Basdevant (1986) who found this result when studying the formation of a vortex couple 
(in the absence of /I-effects) from two initial Gaussian vortices of opposite sign. The 
corresponding section at time t = 14.5T (figure 18c) shows an almost complete 
breakup of the dipole, and the vorticity distribution resembles that of two isolated 
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FIGURE 17. Measured flow characteristics of an ETD at an early stage of the splitting process. Time 
is t = 5.277; with T = 11.4 s the rotation period of the turntable: (a) vorticity contours (contour 
interval 0.06 s-'), (b) stream-function contours (contour interval 1 cmz s-') corrected for the observed 
eastward motion of the dipole, ( c )  vorticity distribution along a line intersecting the points of extremal 
vorticity values, and (4 the w$ plot obtained from the grid points in the interior of the dipole. 
Experimental parameters: f= 1.1 SS', h, = 0.16 m, s = 0.42 m-l, ,B = 0.52 m-l s-l. 

monopolar vortices placed close together. Similar vorticity profiles in single monopolar 
vortices were measured by Kloosterziel & van Heijst (1992, figures 3 f and 4f). 

The wy% plot of the dipole at the former stage (see figure 17d) contains considerable 
scatter (even after corrections), reflecting the non-steadiness of the structure, which was 
in fact about to undergo the splitting process. However, the points agglomerate around 
a nonlinear curve. The wy% relation at t = 14.5T(figure 18d) shows two antisymmetric 
branches which are reasonably approximated by a cubic polynomial. Comparison with 
the wy% relationship of an isolated monopolar vortex, for example as measured by van 
Heijst, Kloosterziel & Williams (1991, figure l l) ,  confirms that the w$ plot of figure 
18d indeed represents a combination of a cyclonic and an anticyclonic shielded 
monopolar vortex. The considerable scatter can be attributed to the different 
meridional drift components of the vortices (which cannot be simultaneously corrected 
for), and also to the non-steadiness of the individual vortices : as shown by for example 
Carnevale et al. (1991), the shielded monopolar vortex on a /3-plane is not quasi- 
stationary, and looses vorticity while drifting. 
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FIGURE 18. Measured flow characteristics of the ETD shown in figure 17 after the splitting has been 
completed (at time t = 14.513: (a) vorticity contours (contour interval 0.06 s-l), (b) stream-function 
contours (contour interval 1 cm2 s-') corrected for the observed westward motion of the monopolar 
vortices, (c) vorticity distribution along a line intersecting the points of extremal vorticity, and ( d )  the 
wy? plot obtained from the grid points in the rectangular area indicated by the broken line in (a). 

7. Conclusions 
According to a point-vortex model vortex couples with the axis tilted with respect 

of isolines of ambient vorticity will oscillate around these lines. In the linear 
approximation the amplitude and wavelength of the path grow with increasing initial 
velocity of the couple and decrease for increasing gradient of ambient vorticity (p). A 
free parameter in the vortex model is the lengthscale associated with each 'point' 
vortex. Slightly non-symmetric dipoles will show the same oscillatory behaviour. 
Strongly non-symmetric couples rotate around a point that moves in a westerly 
direction. 

In a rotating laboratory tank the constant gradient of ambient vorticity is provided 
by the presence of a sloping bottom. In a series of dye experiments dipoles were 
initiated at different angles with respect to the isobaths. The trajectories of dipoles with 
an eastward component in their motion are in good (qualitative) agreement with the 
results obtained by the point-vortex model and by direct numerical simulations of 
modons (Kawano & Yamagata 1977; Makino et al. 1981). Dipoles with a westward 
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component agree only in the perturbation enhancement mechanism but do not show 
the non-translating mode (8-shaped path) or the cycloid-like mode. Only fractions of 
the looping excursion can be observed. An explanation for this can be found in the 
large meridional displacements that the non-translating and cycloid-like modes imply. 
These displacements produce large asymmetries in the dipole leading to strong 
deformation of the weaker part both by the stronger partner and by the relatively 
strong advection-generated relative vorticity in the ambient fluid. 

Detailed measurements of the velocity field and the vorticity distribution of the 
dipolar vortex show variations of the total relative circulation as the dipole moves into 
shallow and deep water, in qualitative agreement with the assumed conservation of 
potential vorticity. A functional relation is observed between vorticity and stream 
function, being linear at the first stages and becoming nonlinear at later stages. The 
slope of the w$ line is observed to increase as the dipole moves into deep water and 
to decrease when the dipole climbs the topography. This effect is due to variations in 
the diameter of the vortex structure by alternating stretching and squeezing of the 
vortex column. 

Generation of relative vorticity by advection of ambient fluid in a meridional 
direction causes ETD’s to grow and to translate more slowly, while WTD’s become 
compact and fast-moving during the first stages (before the development of the 
trajectory instability). The rate of growth of the ETD is determined by the magnitude 
of the secondary vorticity field, which depends on the gradient of ambient vorticity (P) 
and the radius of the structure. It is observed that a strong p-effect leads to the breakup 
of the ETD. After the separation of the dipole into two monopolar vortices, each 
vortex drifts independently under the P-plane dynamics, namely the cyclonic half 
moves in a northwestern direction and the anticyclonic vortex travels to the southwest. 
At an early stage the w$ plot of the ETD is weakly nonlinear (sinh-like), whereas after 
the breakup the w$ plot has a local maximum and a local minimum, which is typical 
of two isolated monopoles of opposite sign located close together. 

The experimental observations reported here and preliminary numerical results 
using other topographies (the so-called y-plane, which simulates the variation of the 
Coriolis parameter in polar regions or the effect of the parabolic free surface in a 
rotating fluid) suggest the existence of a general rule of thumb for dipole behaviour, 
similar to that for monopoles. The new rule would read: dipoles with lengthscales 
smaller than that of the inhomogeneity will perform oscillations around the 
corresponding isolines of ambient vorticity, the dipole travelling to the (local) east 
having a stable trajectory and the dipole travelling to the (local) west an unstable one. 
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